SOME INEQUALITIES FOR PLANAR CONVEX FIGURES
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ABSTRACT. We prove the inequality A < 2Dr, between the area, diameter and
inradius of a compact convex body in the 2-dimensional Euclidean space. Using this
result we derive other relations of the same kind.

1. Introduction

Throughout this paper E? denotes the 2-dimensional Euclidean space with norm
||| and the set of plane convex figures — compact convex sets — in E? is denoted
by K2. The area, diameter, inradius and width of K € K? is denoted by A(K),
D(K), r(K), A(K), respectively. For a detailed description of these functionals
we refer to [BF]. For a subset P C E? the convex (affine) hull of P is denoted by
conv(P), aff(P). Further, the interior of P is denoted by int(P).

It is not hard to see that for K € K? the area A(K) is bounded from above
and below by the diameter and inradius. Indeed, using the well known inequalities
D(K)A(K) < 2A(K) < 2D(K)A(K) [K] we get immediately the lower bound
A(K) > D(K)r(K) which in general can not be improved. Applying BLASCHKE’s
inequality A(K) < 3r(K) [BL] to the upper bound yields A(K) < 3D(K)r(K).
The purpose of this paper is to prove

Theorem 1.1. Let K € K2. Then
A(K) <2D(K)r(K),

and equality holds iff int(K) = (). In the case int(K) # 0 this bound is in general
best possible.

2. Proof of the Theorem

For the proof of Theorem 1.1. we need the following Lemma

Lemma 2.1. Let P = conv{z!, 2% 2% 2*} € K? be a parallelogramme. With the
notation of Figure 1 we have for ||z —y|| < (||zt — 2?||/2)

A(convia,z*, x}) + A(conv{b, 2%, y}) > A(conv{z,y, z}).
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FIGURE 1

Proof. Let a,b be arbitrary points in conv{z!, 23}, conv{z?, z*}. Without loss of
generality let |[2! — x| < ||#? — y|| and let ¢ be the point in conv{z,z?} with
|z — 21| = ||z — ¢||. The ray ¢+ A(z —x3), A > 0, intersects the ray a + u(z — a),
© >0, in a point d and it follows

(2.1) A(conv{z,c,d}) = A(conv{a,z', x}).

In the case ||c—z|| > ||z —y]|| we have conv{z,y, z} C conv{z, c,d} and we are ready.
In the other case the ray ¢+ A(x! — 3), A > 0, also intersects the ray b+ u(z —b),
© >0, in a point e. We get

(2.2) conv{z,y,z} C conv{z,c,d} Uconv{c,y,e}.

By assumption we have ||c — y|| < ||#? — y|| and thus

A(conv{c,y,e}) < A(conv{b, z? y}).

On account of (2.1) and (2.2) we obtain the desired inequality. O

Proof of Theorem 1.1. If int(K) = () then we have A(K) = r(K) = 0 and thus
equality. So we may assume int(K) # (). Let H = conv{z’, 1 <i < 6} be an affine
regular hexagon inscribed in K with midpoint 0 (see Figure 2).

FIGURE 2
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Let D(H) = ||2% — 25||. Then it is well known ([JB, p. 24,25, pp. 124], [E]) that
2% belongs to the boundary of K, 1 <i <6, ||zt — 22| = ||2® — 2| = ||2° — 2||/2
and the edges conv{z!, 2%}, conv{z? %} have maximal length among the edges
of H. Thus the ball with center 0 and radius p (distance of conv{z!,z?} to 0) is
contained in H. Hence
(2.3) p=r(H) <r(K).

Let l1,l5 be two parallel supporting lines of K with normal vector z° and let

A, B, C, D denotes the intersection points of aff {z!, 2}, aff {z3, 2*} with these lines.
Then we have

(2.4) [A=B| = ||D - C|| < D(K).

Now, let u; be supporting lines on K through the points z?, 1 < ¢ < 4. The
intersection points with the lines 1,1l are denoted by a,c,d, f, respectively. Since
2, 1 <14 < 4, belong to the boundary of K we have I; N K Nconv{A4, D} # () and
lo N K Nconv{B,C} # (. Thus a,f € conv{A, D} and ¢,d € conv{B,C}. The
intersection point of the lines u', u? (u?,u*) is denoted by b (e). Obviously,

K C conv{a,b,c,d,e, f} = conv{a,z', 2% ¢,d, z*, 23, f}

2.5 .
25) Uconv{z!, 22 b} Uconv{z? e, z®}.

By Lemma 1.1. we get A(conv{z!, 2% b}) < A(conv{a, A,z'}) + A(conv{z?, B, c})
and A(conv{z? e, 23, }) < A(conv{d, C,x*})+ A(conv{x?, D, f}) and thus by (2.5),
(2.4) and (2.3)

A(K) < A(conv{4, B,C,d}) = | A~ B| -2 < 2D(K)R(K).

To show that this inequality is strict suppose 7(K) = p. Then two parallel edges of
H belongs to the boundary of K and every of these edges has a common point with
the insphere of radius 7(K). Thus K is contained in the parallel strip accociated
to these edges and hence A(K) < 2D(K)r(K). This shows A(K) = 2D(K)r(K) iff
int(K) = 0.
Further the quader Q(q) = {(z1,22)T € E? | |z1| < g, |22| < 1}, ¢ € R, shows for
q — oo that in general this inequality can not be improved in the case int(K) # .
O

3. Further inequalities

In this section we collect some inequalities for plane convex figures which are
closely related to Theorem 1.1. To this end R(K), L(K) denotes the circumradius,
perimeter of a convex body K € K2, respectively.

(1) (VB/DAK)R(K) < AK) < 20(K)R(K).

For the lower bound see [He, p. 29] and the upper bound can be easily
deduced from A(K) < A(K)D(K) [K].

(2) L(K)r(K) <24A(K) <2r(K)(L(K) —mr(K)).
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The upper bound is due to BONNESEN [Bo] and the obvious lower bound
can be found in [BF, p.82].

(3) 4R(K) < L(K) < 2D(K) + 4r(K).

For the lower bound see [N], [CK]. The upper bound follows by Theo-
rem 1.1. and the well known FARVARD’s inequality L(K)D(K) < 2A(K) +
2D(K)? (cf. [F], [RR]).

(4) 2R(K)r(K) < A(K) <4R(K)r(K).

The lower bound follows from the obvious inequality 2A(K) > L(K)r(K)
[BF] and the lower bound in (3). The upper bound is an immediate conse-
quence of Theorem 1.1. and D(K) < 2R(K).

(5) R(K)(L(K) —4R(K)) < A(K) < 2R(K)(L(K) — 2R(K)).

The lower bound is due to FAVARD [F]. For the upper bound let 0 center of
an insphere with radius r(K). Then it is easy to see that K is contained in
the ball with radius D(K)—r(K) and center 0. Thus D(K) > R(K)+r(K)
and by 2D(K) < L(K) we get L(K) —2R(K) > 2r(K). Together with the
upper bound in (4) we obtain the desired inequality.

(6) D(K)(L(K) - 2D(K)) < 2A(K) < L(K)D(K)/2.

(BI]

[Bo]
[BF]
[CK]

The lower bound is also due to FAVARD [F] and the upper bound is due to
HavasHI [H].
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