SOME INEQUALITIES FOR PLANAR CONVEX FIGURES

MARTIN HENK AND GEORGE A. TSINTSIFAS

ABSTRACT. We prove the inequality $A \leq 2Dr$, between the area, diameter and inradius of a compact convex body in the 2-dimensional Euclidean space. Using this result we derive other relations of the same kind.

1. Introduction

Throughout this paper E^2 denotes the 2-dimensional Euclidean space with norm $\|\cdot\|$ and the set of plane convex figures — compact convex sets — in E^2 is denoted by \mathcal{K}^2 . The area, diameter, inradius and width of $K \in \mathcal{K}^2$ is denoted by A(K), D(K), r(K), $\Delta(K)$, respectively. For a detailed description of these functionals we refer to [BF]. For a subset $P \subset E^2$ the convex (affine) hull of P is denoted by $\operatorname{conv}(P)$, $\operatorname{aff}(P)$. Further, the interior of P is denoted by $\operatorname{int}(P)$.

It is not hard to see that for $K \in \mathcal{K}^2$ the area A(K) is bounded from above and below by the diameter and inradius. Indeed, using the well known inequalities $D(K)\Delta(K) \leq 2A(K) \leq 2D(K)\Delta(K)$ [K] we get immediately the lower bound $A(K) \geq D(K)r(K)$ which in general can not be improved. Applying BLASCHKE's inequality $\Delta(K) \leq 3r(K)$ [BL] to the upper bound yields $A(K) \leq 3D(K)r(K)$. The purpose of this paper is to prove

Theorem 1.1. Let $K \in \mathcal{K}^2$. Then

$$A(K) \leq 2D(K)r(K),$$

and equality holds iff $int(K) = \emptyset$. In the case $int(K) \neq \emptyset$ this bound is in general best possible.

2. Proof of the Theorem

For the proof of Theorem 1.1. we need the following Lemma

Lemma 2.1. Let $P = \text{conv}\{x^1, x^2, x^3, x^4\} \in \mathcal{K}^2$ be a parallelogramme. With the notation of Figure 1 we have for $||x - y|| \le (||x^1 - x^2||/2)$

$$A(\operatorname{conv}\{a,x^1,x\}) + A(\operatorname{conv}\{b,x^2,y\}) \ge A(\operatorname{conv}\{x,y,z\}).$$

¹⁹⁹¹ Mathematics Subject Classification. 52A10, 52A40, 52A38.

 $Key\ words\ and\ phrases.$ area, perimeter, in radius, circumradius, diameter, width.

Figure 1

Proof. Let a,b be arbitrary points in $\operatorname{conv}\{x^1,x^3\}$, $\operatorname{conv}\{x^2,x^4\}$. Without loss of generality let $\|x^1-x\|\leq \|x^2-y\|$ and let c be the point in $\operatorname{conv}\{x,x^2\}$ with $\|x-x^1\|=\|x-c\|$. The ray $c+\lambda(x^1-x^3)$, $\lambda\geq 0$, intersects the ray $a+\mu(z-a)$, $\mu\geq 0$, in a point d and it follows

(2.1)
$$A(\text{conv}\{x, c, d\}) = A(\text{conv}\{a, x^1, x\}).$$

In the case $||c-x|| \ge ||x-y||$ we have $\operatorname{conv}\{x,y,z\} \subset \operatorname{conv}\{x,c,d\}$ and we are ready. In the other case the ray $c + \lambda(x^1 - x^3)$, $\lambda \ge 0$, also intersects the ray $b + \mu(z - b)$, $\mu \ge 0$, in a point e. We get

(2.2)
$$\operatorname{conv}\{x, y, z\} \subset \operatorname{conv}\{x, c, d\} \cup \operatorname{conv}\{c, y, e\}.$$

By assumption we have $||c - y|| \le ||x^2 - y||$ and thus

$$A(\operatorname{conv}\{c, y, e\}) < A(\operatorname{conv}\{b, x^2, y\}).$$

On account of (2.1) and (2.2) we obtain the desired inequality.

Proof of Theorem 1.1. If $\operatorname{int}(K) = \emptyset$ then we have A(K) = r(K) = 0 and thus equality. So we may assume $\operatorname{int}(K) \neq \emptyset$. Let $H = \operatorname{conv}\{x^i, 1 \leq i \leq 6\}$ be an affine regular hexagon inscribed in K with midpoint 0 (see Figure 2).

Figure 2

Let $D(H) = \|x^5 - x^6\|$. Then it is well known ([JB, p. 24,25, pp. 124], [E]) that x^i belongs to the boundary of K, $1 \le i \le 6$, $\|x^1 - x^2\| = \|x^3 - x^4\| = \|x^5 - x^6\|/2$ and the edges $\operatorname{conv}\{x^1, x^2\}$, $\operatorname{conv}\{x^3, x^4\}$ have maximal length among the edges of H. Thus the ball with center 0 and radius ρ (distance of $\operatorname{conv}\{x^1, x^2\}$ to 0) is contained in H. Hence

$$(2.3) \rho = r(H) \le r(K).$$

Let l_1, l_2 be two parallel supporting lines of K with normal vector x^5 and let A, B, C, D denotes the intersection points of aff $\{x^1, x^2\}$, aff $\{x^3, x^4\}$ with these lines. Then we have

$$||A - B|| = ||D - C|| \le D(K).$$

Now, let u_i be supporting lines on K through the points x^i , $1 \le i \le 4$. The intersection points with the lines l_1, l_2 are denoted by a, c, d, f, respectively. Since x^i , $1 \le i \le 4$, belong to the boundary of K we have $l_1 \cap K \cap \text{conv}\{A, D\} \neq \emptyset$ and $l_2 \cap K \cap \text{conv}\{B, C\} \neq \emptyset$. Thus $a, f \in \text{conv}\{A, D\}$ and $c, d \in \text{conv}\{B, C\}$. The intersection point of the lines u^1, u^2 (u^3, u^4) is denoted by b (e). Obviously,

(2.5)
$$K \subset \operatorname{conv}\{a, b, c, d, e, f\} = \operatorname{conv}\{a, x^1, x^2, c, d, x^4, x^3, f\} \\ \cup \operatorname{conv}\{x^1, x^2, b\} \cup \operatorname{conv}\{x^4, e, x^3\}.$$

By Lemma 1.1. we get $A(\text{conv}\{x^1, x^2, b\}) \le A(\text{conv}\{a, A, x^1\}) + A(\text{conv}\{x^2, B, c\})$ and $A(\text{conv}\{x^4, e, x^3, \}) \le A(\text{conv}\{d, C, x^4\}) + A(\text{conv}\{x^3, D, f\})$ and thus by (2.5), (2.4) and (2.3)

$$A(K) \le A(\text{conv}\{A, B, C, d\}) = ||A - B|| \cdot 2\rho \le 2D(K)R(K).$$

To show that this inequality is strict suppose $r(K) = \rho$. Then two parallel edges of H belongs to the boundary of K and every of these edges has a common point with the insphere of radius r(K). Thus K is contained in the parallel strip accociated to these edges and hence A(K) < 2D(K)r(K). This shows A(K) = 2D(K)r(K) iff $int(K) = \emptyset$.

Further the quader $Q(q) = \{(x_1, x_2)^T \in E^2 \mid |x_1| \leq q, |x_2| \leq 1\}, q \in \mathbb{R}$, shows for $q \to \infty$ that in general this inequality can not be improved in the case $\mathrm{int}(K) \neq \emptyset$.

3. Further inequalities

In this section we collect some inequalities for plane convex figures which are closely related to Theorem 1.1. To this end R(K), L(K) denotes the circumradius, perimeter of a convex body $K \in \mathcal{K}^2$, respectively.

- (1) $(\sqrt{3}/2)\Delta(K)R(K) \leq A(K) \leq 2\Delta(K)R(K)$. For the lower bound see [He, p. 29] and the upper bound can be easily deduced from $A(K) \leq \Delta(K)D(K)$ [K].
- (2) $L(K)r(K) \le 2A(K) \le 2r(K)(L(K) \pi r(K)).$

The upper bound is due to BONNESEN [Bo] and the obvious lower bound can be found in [BF, p.82].

- (3) $4R(K) \le L(K) \le 2D(K) + 4r(K)$.
 - For the lower bound see [N], [CK]. The upper bound follows by Theorem 1.1. and the well known FARVARD's inequality $L(K)D(K) \leq 2A(K) + 2D(K)^2$ (cf. [F], [RR]).
- (4) $2R(K)r(K) \le A(K) \le 4R(K)r(K)$.
 - The lower bound follows from the obvious inequality $2A(K) \ge L(K)r(K)$ [BF] and the lower bound in (3). The upper bound is an immediate consequence of Theorem 1.1. and $D(K) \le 2R(K)$.
- (5) $R(K)(L(K) 4R(K)) \le A(K) \le 2R(K)(L(K) 2R(K)).$
 - The lower bound is due to FAVARD [F]. For the upper bound let 0 center of an insphere with radius r(K). Then it is easy to see that K is contained in the ball with radius D(K) r(K) and center 0. Thus $D(K) \ge R(K) + r(K)$ and by $2D(K) \le L(K)$ we get $L(K) 2R(K) \ge 2r(K)$. Together with the upper bound in (4) we obtain the desired inequality.
- (6) $D(K)(L(K) 2D(K)) \le 2A(K) \le L(K)D(K)/2$.
 - The lower bound is also due to FAVARD [F] and the upper bound is due to HAYASHI [H].

æ

References

- [Bl] W. Blaschke, Über den größten Kreis in einer konvexen Punktmenge, Jber. Deutsch. Math. Vereinig. 23 (1914), 369–374.
- [Bo] T. Bonnesen, Les problmes des isoprimtres et des ispiphanes, Paris, 1929.
- [BF] T. Bonnesen, W. Fenchel, Theorie der konvexen Krper, Springer, Berlin, 1934.
- [CK] G.D. Chakerian, M.S. Klamkin, Minimal covers for closed curves, Math. Magazine 78(2) (1973), 55-61.
- [E] H.G. Eggleston, Convexity, Cambridge Univ. Press, Cambridge, 1958.
- [F] J. Favard, Problems d'extremums relatifs aux courbes convexes I. II., Ann. Ecole norm. 46 (1929), 345–369.
- [H] T. Hayashi, The extremal chords of an oval, Tôhoku Math. J. 22 (1923), 387–393.
- [He] M. Henk, Ungleichungen für sukzessive Minima und verallgemeinerte In- und Umkugelradien, PhD thesis, University of Siegen (1991).
- [JB] I.M. Jaglom, W.G. Boltjanski, Konvexe Figuren, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.
- [K] T. Kubota, Einige Ungleichheitsbeziehungen über Eilinien und Eiflächen, Sci. Rep. Tôhoku Univ. 12 (1923), 45–65.
- J.C.C. Nitsche, The smallest sphere containing α rectifiable curve, Amer. Math. Monthly 87 (1971), 881–882.
- [RR] M. Rogialski, J.S. Raymond, Inequalities about symmetric compact convex sets in the plane, Am. Math. Monthly 92(7) (1985), 466–480.

æ

Martin Henk, Mathematisches Institut, Universitt Siegen, Hlderlinstrasse 3, D-W-5900 Siegen, Federal Republic of Germany

 $E ext{-}mail\ address: henk@hrz.uni-siegen.dbp.de}$

George A. Tsintsifas, Platonos str. 23, 54631 Thessaloniki, Greece.